
Testing Your Question Answering Software via
Asking Recursively

Songqiang Chen∗†, Shuo Jin∗†, Xiaoyuan Xie∗†‡
∗School of Computer Science, Wuhan University, China

i9schen@gmail.com, imjinshuo@whu.edu.cn, xxie@whu.edu.cn

Abstract—Question Answering (QA) is an attractive and chal-
lenging area in NLP community. There are diverse algorithms
being proposed and various benchmark datasets with different
topics and task formats being constructed. QA software has also
been widely used in daily human life now. However, current QA
software is mainly tested in a reference-based paradigm, in which
the expected outputs (labels) of test cases need to be annotated
with much human effort before testing. As a result, neither the
just-in-time test during usage nor the extensible test on massive
unlabeled real-life data is feasible, which keeps the current testing
of QA software from being flexible and sufficient. In this paper,
we propose a method, QAASKER, with three novel Metamorphic
Relations for testing QA software. QAASKER does not require the
annotated labels but tests QA software by checking its behaviors
on multiple recursively asked questions that are related to the
same knowledge. Experimental results show that QAASKER can
reveal violations at over 80% of valid cases without using any pre-
annotated labels. Diverse answering issues, especially the limited
generalization on question types across datasets, are revealed on
a state-of-the-art QA algorithm.

Index Terms—question answering, testing and validation, re-
cursive metamorphic testing, natural language processing

I. INTRODUCTION

With the booming development of Natural Language Pro-
cessing (NLP) techniques, machine has been able to process
many tasks. Among them, Question Answering (QA) is one
challenging but attractive goal that requires machine to under-
stand the human language and infer information from it as the
human do [1], [2]. Given a question, QA software intelligently
comprehends the relevant information from a lengthy reference
passage or one huge knowledge base and returns the deduced
answer. QA software has been widely used in daily human life
now. For example, many intelligent devices are equipped with
a virtual assistant, such as Siri from Apple [3] and DuerOS
from Baidu [4], which can provide the QA service.

Recently, we have seen many algorithms being proposed to
improve the performance of QA software. Meanwhile, various
benchmark datasets with distinct topics and task formats have
been constructed to evaluate how well machine can answer the
questions [5]–[8]. Nevertheless, the testing methods for QA
software are still primitive and thin. Specifically, current QA
testing practices mainly adopt the reference-based paradigm.
And when performing a reference-based test, the researchers or
engineers have to first manually annotate the labels (correct
answers) for the test cases (assigned questions), which requires

†Equal contribution and co-first authors.
‡Corresponding author.

much human effort [6], [9]. Afterwards, QA software is tested
by comparing its outputs with the annotated labels. As a result,
these testing practices of QA software are mandatorily relying
on the existing well-annotated datasets.

However, the reference-based test paradigm has some lim-
itations due to its reliance on the pre-annotated labels. First,
it cannot support the “just-in-time test” for QA software,
which requires an immediate issue detection on the returned
answers to unlabeled questions. But such a kind of testing is
actually inevitable and necessary in the daily usage. Let us
consider the common usage scenario of QA software, where
the user inputs one question to which she is looking for the
answer. After getting an answer from QA software, she needs
to make a quick decision on whether to trust this answer or
not, without any pre-annotated labels. This process could be
seen as one test execution followed by an immediate issue
detection on which the decision is based, but the current
reference-based test paradigm is obviously not designed to
support such a process. And for the real-life usage, it is also
very common to see the users directly trust the QA software
to have passed this test and given a reliable answer, because
they have barely any clues on the correctness of these answers.
However, since the reliability of QA software is not always
guaranteed because of the complexity and intractability of the
neural networks, it could be very risky to trust the outputs
without any inspection. Secondly, the reference-based test can
only be performed on the existing well-annotated benchmarks,
which may confine the test sufficiency on QA software and
hinder the understanding of its real performance. Actually,
recent studies found that some existing benchmarks introduce
bias of topics and task formats because of their limited size
and diversity [10], [11]. As a result, some vital functionalities
of QA software may not have been well tested yet. However,
the only way to perform more reference-based tests with the
massive and continuously increasing unlabeled real-life data
is to pay a lot of human effort to annotate them all the time.
This is evidently inefficient and infeasible. In addition, over-
reliance on the manually annotated labels could also hurt
the accuracy of test results, because it has been revealed that
some of the manually annotated labels that are regarded as the
“golden references” in benchmarks could be erroneous [12].

All in all, it is of great necessity to provide a new testing
method of QA software that does not need any pre-annotated
labels, so that a just-in-time test during the usage with efficient
and effective issue detection becomes feasible, massive unla-

104

2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE)

DOI 10.1109/ASE51524.2021.00020

20
21

 3
6t

h
IE

EE
/A

C
M

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

ut
om

at
ed

 S
of

tw
ar

e
En

gi
ne

er
in

g
(A

SE
) |

 9
78

-1
-6

65
4-

03
37

-5
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
A

SE
51

52
4.

20
21

.9
67

86
70

978-1-6654-0337-5/21/$31.00 ©2021 IEEE

Authorized licensed use limited to: Wuhan University. Downloaded on July 18,2022 at 08:27:10 UTC from IEEE Xplore. Restrictions apply.

beled data can be potentially leveraged to conduct the more
sufficient tests for QA software, and errors in labels will no
longer bring any impact on the test.

In this paper, we propose a method named QAASKER and
design three novel Metamorphic Relations (MRs) to achieve
this goal. Specifically, QAASKER tests QA Software by ask-
ing recursively. Given a test input, it first synthesizes a pseudo
fact according to the question from this (source) input and the
corresponding answer (source output) from QA software. After
that, it raises one new question based on the pseudo fact and
recursively asks QA software for the new answer (follow-up
output). Finally, it checks the new answer against the pseudo
fact. If both the source and follow-up outputs are correct, the
pseudo fact should hold and the new answer would conform
with the expected answer derived from it. Otherwise, at least
one of the source output and the follow-up output is wrong.

We have performed comprehensive experiments to evaluate
the effectiveness of QAASKER. Specifically, we first use it to
test a state-of-the-art QA algorithm, UnifiedQA [13], with the
test inputs from three classic benchmarks, i.e., SQuAD2 [5],
BoolQ [6], and NatQA [7]. The results show that QAASKER
can reveal many violations on UnifiedQA at over 80% of valid
cases without referring to any annotated labels. The revealed
answering issues include the missing answers, nonrecognition
of question types, etc. The potential generalization issue of
UnifiedQA on question types has also been revealed. Besides,
we found that expanding the training data with the proposed
MRs could help to fix the revealed defects. We also preliminar-
ily explore the usefulness of QAASKER on a popular real-life
QA application, the Google Search service [14].

In summary, this work makes the following contributions:
• We propose a method named QAASKER to test Question

Answering software via Asking Recursively. It gets rid of
the dependency on the manually annotated ground truth
labels of test cases and therefore enables both the flexible
just-in-time test during usage and the extensible test with
massive real-life unlabeled data for QA software.

• We design and implement three novel Metamorphic Re-
lations in QAASKER. They check the consistency among
the input question and output answer pairs related to the
same pseudo fact, where the input questions are of distinct
types (e.g., general questions and wh-questions) or asking
for different objects in the pseudo fact.

• We perform comprehensive experiments to evaluate the
effectiveness of QAASKER. Results show that QAASKER
can successfully reveal many violations at over 80% of
valid cases without referring to any annotated labels on
the model built with a state-of-the-art QA algorithm. We
also show several types of the revealed answering issues,
especially the limited generalizability on question types
across datasets.

• We demonstrate and discuss the usage of QAASKER on
the real-life QA software by taking an initial sip on the
Google Search service.

The tool, replication package, and specific implementa-
tion details for this paper are available online at [15].

The rest of this paper is structured as follows. Section II
introduces the background and motivation of this work. Sec-
tion III elaborates the details of QAASKER, with three novel
MRs proposed. Afterwards, Section IV and Section V describe
the settings and the results of the evaluation on QAASKER,
respectively. Next, Section VI discusses the real-life usage of
QAASKER. Section VII presents the threats to validity and
Section VIII lists the related works. Finally, Section IX draws
a conclusion and lists our future work.

II. PRELIMINARIES

A. Question Answering Software

Question Answering (QA) has been a hot research topic for
a long time. It is omnipresent in various domains in our daily
life, such as virtual assistants [1], E-commerce services [16],
and healthcare [17], [18]. QA tasks are generally divided into
closed-world and open-world [16]. The closed-world QA is to
answer each given question based on the attached reference
passage. And the open-world QA is a new emerging task that
demands questions as the only input. It usually requires to first
retrieve the reference from the web or construct a knowledge
base before performing comprehension and inference [19].

In this paper, we mainly target the closed-world QA soft-
ware, considering many relevant algorithms and datasets are
available. In fact, the closed-world QA is still playing the
core role in the open-world QA systems [19]. Therefore, our
method can also work on the open-world QA software and we
briefly discuss such usages in Section VI as well.

Closed-world QA tasks can be solved with various methods.
Sometimes, we can transfer the pre-trained language models
to these tasks without much effort. For example, simply fine-
tuning ROBERTa [20] and T5 [21] can just lead to promising
performance on several closed-world QA task formats, such
as the span extraction and the boolean judgment [22]. There
are also many specially-designed neural networks proposed to
improve question answering by imitating human reading skills
[23]–[25]. Recently, Khashabi et al. [13] unify the views of the
closed-world QA task formats into one framework to build the
general format-agnostic QA systems. They propose a method
named UnifiedQA, which can solve the closed-world QA tasks
in distinct formats with one single model and has shown pretty
promising performance on par with or better than the format-
agnostic models on many benchmark datasets.

In the meantime, NLP researchers have constructed a few
benchmark datasets and some leaderboards to study the per-
formance and promote the improvement of the QA algorithms
[2], [26], [27]. On one hand, they design the datasets of many
task formats, such as the span extraction [5], [8], [28], the
boolean judgment [6], [29], and the free-form answering [7],
[9]. On the other hand, they build corpora in many domains,
including customer service [16], clinical and biomedical [17],
[18], real-life search queries [6], [7], etc.

B. Motivation

As introduced above, QA software has been widely used
in daily human life, thus there is an urgent demand to assure

105

Authorized licensed use limited to: Wuhan University. Downloaded on July 18,2022 at 08:27:10 UTC from IEEE Xplore. Restrictions apply.

TABLE I
A MOTIVATING REAL-LIFE EXAMPLE

Reference
Passage

(The News)

... the 13th season of ”SuperNatural” ... premiered on
October 12, 2017 on the CW and concluded on May ...
the 7th season of the American TV series ”Arrow” ...
premiered on the CW on October 15, 2018 and is set ...

Question 1 When does the new episode of Arrow come out?
Answer 1 October 12

Question 2 Whose new episode comes out on October 12?
Answer 2 SuperNatural

the quality of its returned answers and reveal its undisclosed
defects. Currently, almost all the NLP models, including the
core models in QA software, are mainly tested in the reference-
based paradigm [11], [30]. As explained in Section I, in this
test paradigm, the researchers or engineers must first obtain a
well-annotated benchmark dataset, which means the existing
benchmarks are mandatory during testing QA software. Once
presented with the output answers to unannotated questions,
current testing methods cannot automatically make a decision
about whether there is any problem in the output answers.

In fact, such a decision is inevitable, and it is of great ne-
cessity to support it. Let us first consider a real-life example1.
Supposing that Tom is a super fan of the American superhero
TV series, he is looking forward to the 7th season of Arrow.
One day he receives a piece of news (as shown in Table I)
telling that Arrow will succeed SuperNature that is currently
on show. To avoid reading the lengthy news, he asks a virtual
assistant, which is built upon one UnifiedQA model, to read
the news and answer “When does the new episode of Arrow
come out?” (Question 1). After few seconds, he receives an
answer “October 12” (Answer 1). Without having enough time
to carefully verify it with the lengthy news, Tom chooses to
trust this answer. However, when the day comes, Tom turns on
the TV with great expectation but only finds that Arrow does
not come out, which largely dampens his enthusiasm. This
does bring an unpleasant experience. But if we consider Tom’s
question a test case, it is indeed not easy to automatically and
quickly verify the output answer now, because no ground truth
label is available. Thus, to avoid such unhappiness and even
more serious issues in other critical application domains, a
new testing method that does not require the label is desired to
support the immediate issue detection on the returned answers
to the unlabeled questions for QA software.

And such a method is also necessary for the more com-
prehensive tests for QA software, even if there exist a few
benchmark datasets. As mentioned in Section I, the bench-
marks are found to be imperfect. Specifically, many existing
benchmark datasets are found to have the bias of topics and
task formats and therefore may hinder the understanding of
real-life performance [10], [11]. As a result, it is far from being
sufficient to solely rely on the existing finite benchmarks to
test QA software. Meanwhile, it can also be very expensive to

1This example is based on the real output of our trained UnifiedQA [13]
model for an actual test case from the NatQA [7] dataset.

construct new well-annotated benchmarks because it requires
much human effort to annotate the correct answers for the new
questions in them [6], [9]. In addition, the manual annotation
could also introduce some errors [12], thus hurts the accuracy
of the test results.

Therefore, in this work, we aim to propose a testing method
to achieve these goals. The proposed method should not rely
on the annotated ground truth labels, thus it can provide a
just-in-time test with efficient and effective issue detection and
leverage massive unlabeled data to perform the extensible and
abundant tests for QA software.

C. Metamorphic Testing

Metamorphic Testing (MT) is a proper candidate solution
to bypass the labels of test cases, as it was proposed to reuse
the passed test cases and alleviate the oracle problem during
software testing [31], [32]. MT does not require any inspection
on the correctness of each individual output. Instead, it checks
whether multiple outputs satisfy the specified relations, namely
the Metamorphic Relations (MRs). One famous object of MT
is sin function. Verifying the correctness of sin(x) given an
arbitrary x is very expensive. In order words, we encounter
the oracle problem when testing sin function. But checking
the relation of sin(x) = −sin(−x) is straightforward. In
this example, sin(x) = −sin(−x) is called the Metamorphic
Relation (MR), which can be also rephrased as: if x (the source
test input) is negated to −x (the follow-up test input), their
outputs are also opposite to each other. MT has been used
to test various software and systems, such as the supervised
classifiers [33] and the unsupervised clusters [34]. And Zhou et
al. [35] use MT to perform a system/service level validation for
the search engines, where they mainly construct the follow-up
inputs by considering the information in the source outputs as
additional query restrictions. Recently, we have also seen MT
being widely used for testing many deep learning applications,
such as autonomous driving systems [36]–[39] and language
translation services [40]–[44].

III. METHODOLOGY

A. A Recursive Metamorphic Testing Method for QA Software

Let us revisit the example in Section II-B. Supposing that
Jack is another super fan of Arrow, he asks the same question
as Tom does and gets a same answer, that is, “October 12”,
from his virtual assistant. He does not have time to carefully
verify this output answer as well. But unlike Tom, by seeing
this answer, Jack decides to go further and ask the assistant a
new question, “Whose new episode comes out on October 12?”
(Question 2). As shown in Table I, at this time the assistant
replies “SuperNatural” (Answer 2). By comparing these two
answers, Jack is then confused, since “Arrow” is not included
in the second answer as he has expected. But the good thing
is: even if Jack may not be clear about which answer is wrong,
he has already had some clues that this QA virtual assistant is
not reliable and at least one of the two answers is incorrect.

This example illustrates the basic idea of this paper. To
break the reliance on the annotated labels during testing, we

106

Authorized licensed use limited to: Wuhan University. Downloaded on July 18,2022 at 08:27:10 UTC from IEEE Xplore. Restrictions apply.

propose a method, QAASKER, to test QA software by Asking
Recursively. The input of QAASKER is the QA software under
test (SUT) and a list of unlabeled closed-world queries (each
of which contains a reference passage and a question, but no
manually labeled answers for the questions are required). The
output of QAASKER is a list of the revealed suspicious issues
that the tested QA software has made.

By leveraging Metamorphic Testing (MT), QAASKER tests
the SUT via checking whether its multiple outputs violate the
expected Metamorphic Relations (MRs) instead of comparing
each individual output with its ground truth label. The basic
idea of the MRs we design in this paper is that a correct an-
swer should imply a piece of knowledge that always holds.
Specifically, given a test input s = (p, q) (also considered as
“source input”) where p is the reference passage and q is the
question, let us denote the answer given by SUT as a. Then, a
piece of knowledge k can be synthesized from q and a. This
k is also referred as a “pseudo fact”. Taking Question 1 and
Answer 1 in Table I as an example, by synthesizing Question 1
and Answer 1, we can then obtain a piece of knowledge “The
new episode of Arrow comes out on October 12.”. Obviously, if
the answer a is correct, the knowledge k is then a true fact that
should always hold. Based on this synthesized knowledge k,
we next recursively raise a new question q′. Let us denote
the new answer that SUT returns as a′. If a′ is also correct,
it should conform with the above knowledge k, regarding q′.
Otherwise, at least one of a and a′ is erroneous and a violation,
as well as an answering issue, is revealed by this pair of input
and output. In the above example, we construct Question 2
“Whose new episode comes out on October 12?” based on k.
Obviously, the knowledge from Answer 2 “SuperNatural” and
Question 2 does not conform with k, and one issue is therefore
revealed. This process does not require the label of s but
automatically creates oracles. As a consequence, it effectively
breaks the dependency on the manually annotated labels
during testing and thus provides a possible solution to testing
QA software on unlabeled data.

Based on this idea, we propose three novel MRs by consid-
ering the consistency among the input question and output an-
swer pairs related to the same knowledge, where the questions
are of different types (i.e., the general questions, alternative
questions, and wh-questions) or asking for different objects
in the knowledge. QAASKER realizes these MRs with three
modules, namely the synthesis of knowledge declaration from
the given question and answer, the generation of the question
from the given knowledge, and the violation measurement
on the source and follow-up cases. In the following, we will
elaborate the design of the MRs and the modules in detail.

B. Proposed Metamorphic Relations

As mentioned above, we propose three MRs to test the QA
software by checking its behaviors on multiple questions that
are related to a same knowledge. In this section, we introduce
the overall idea of each MR. To simplify the demonstration,
we denote the question in source and follow-up input as qTYPE

and q′TYPE, respectively. The source and follow-up outputs of

TABLE II
DEFINITION OF QUESTION TYPES

Abbr. Type Examples

WH wh-question Q: Who was Emma’s brother? A: Duke Richard II.
Q: How many soldiers were in each Tumen? A: 10,000.

GEN general
question

Q: Is this the last year for once upon a time? A: Yes.
Q: Does a cow have to be pregnant to lactate? A: No.

ALT alternative
question

Q: Is the UK a state or a country? A: A country.
Q: Is a potato a tuber or a vegetable? A: A tuber.

(a) Test Process of MR1

(b) Test Process of MR2

(c) Test Process of MR3

Fig. 1. Proposed Recursive Metamorphic Relations

SUT are denoted as aTYPE and a′TYPE in the same way. The
value of TYPE is one from {WH, GEN, ALT} as explained in
Table II. As a reminder, the reference passage in the follow-up
input is the same as the one in the source input.

MR1: Answering new follow-up wh-question derived
from the answer of the existing source wh-question.

This MR is eligible for the test inputs with a wh-question
on which SUT’s output is not “<NoAnswer>”. As shown in
Fig. 1(a), given a wh-question qWH, we first obtain aWH from
SUT. Then, a declarative sentence k (i.e., the knowledge) is
synthesized from qWH and aWH with the declarative sentence
synthesis (DSS) module. After that, we leverage the question
sentence generation (QSG) module to generate the new wh-
question and the corresponding target answer based on k. As
there may be more than one wh-questions available for k, we
randomly pick one from them as q′WH and its target answer is
denoted as atWH. Next, we run SUT with q′WH to obtain a′WH. If
the SUT is correct, both aWH and a′WH should be correct, and
the knowledge k is a true fact. Since atWH is deduced from k,
we expect atWH is part of a′WH. If atWH does not exist in a′WH,
at least one of aWH and a′WH is wrong. (More details about the
output checking will be introduced in Section III-E1.)

MR2: Answering new follow-up general question de-
rived from the answer of the existing source wh-question.

This MR is also eligible for the test cases whose question
is one wh-question with a non-“<NoAnswer>” SUT output.
Fig. 1(b) shows the overall process of this MR. Similar to the
operation in MR1, we first synthesize the declarative sentence
k from qWH and aWH with DSS. Next, we use QSG to generate
a new general question q′GEN and the corresponding expected
target answer atGEN, based on k. It is not difficult to find out

107

Authorized licensed use limited to: Wuhan University. Downloaded on July 18,2022 at 08:27:10 UTC from IEEE Xplore. Restrictions apply.

(a) Declarative Sentence Synthesis from General Question (b) Declarative Sentence Synthesis from Alternative Question

Rule Example

WH be noun1? → noun1 be aWH. How is the speed of light in all reference frames? + The same. → The speed of light is the same
in all reference frames.

WH do noun1 verb1 ...? → noun1 verb′1 aWH ... What does the sea monster with a female upper body hold in its claws? + A sword. → The sea
monster with a female upper body holds a sword in its claws.

WH modal noun1 verb1 ...? → noun1 modal verb1 aWH ... When can oxygen gas produce a toxic condition? + At elevated partial pressures. → Oxygen gas
can produce a toxic condition at elevated partial pressures.

Whose noun1 be noun2? → aWH noun1 be noun2. Whose theory was the theory of continental drift? + Alfred Wegener. → Alfred Wegener’s theory
was the theory of continental drift.

WH: wh-words like “what”, “how”, “when”, “who”, etc. modal: modal words like “can”, “must”, ‘would”, etc. verb/verb′ : verb phrase and its adaption to the tense and number of auxiliary.

(c) Typical Heuristic Rules for Declarative Sentence Synthesis from Wh-Question

Fig. 2. Process and Example of Declarative Sentence Synthesis

that the atGEN should be “Yes”. We then run the SUT with
q′GEN to obtain a′GEN. If the SUT is correct, both aWH and a′GEN
should be correct, and k should be a true fact accordingly. As
a result, a′GEN should be consistent with atGEN, that is, “Yes”
(or other sentences that express an affirmation). Otherwise,
an issue is found because there must be at least one error in
aWH and a′GEN. (More details about the output checking will
be introduced in Section III-E2.)

MR3: Answering new follow-up wh-question derived
from the answer of the existing source general or alterna-
tive question.

This MR is eligible for the test inputs that have a general
question or an alternative question. As shown in Fig. 1(c), we
first use DSS to transform the given qGEN (or qALT) into its
declarative form k according to aGEN (or aALT). After that, as
we operate in MR1, we obtain a new wh-question q′WH as well
as its expected target answer atWH based on k, and run SUT
with q′WH to obtain a′WH. If the SUT is correct, then both aGEN

(or aALT) and a′WH should be correct, and the k is a true fact
accordingly. As a consequence, atWH should exist in a′WH. The
absence of atWH in a′WH would indicate that at least one in aGEN

(or aALT) and a′WH is erroneous. (More details about the output
checking will be introduced in Section III-E1.)

C. Declarative Sentence Synthesis
In this section, we introduce the methods to synthesize the

declarative sentence (the knowledge k) from a pair of question
and SUT’s corresponding output answer. The question could
be one of three types, namely general questions, alternative
questions, and wh-questions.

1) Declarative Sentence Synthesis from General Question:
For a general question qGEN and SUT’s answer aGEN, three
steps are needed to synthesize the corresponding declarative
sentence k. Fig. 2(a) shows this process. Specifically, we first
use spaCy toolkit [45] to analyze the token dependency and
locate the auxiliary (AUX)2 in qGEN (step 1). When AUX is a

2AUX is a non-main verb of the clause, including a modal auxiliary and a
form of be, do or have in a periphrastic tense. Details could be found at [46].

form of be or a modal auxiliary, we then move it to the location
before the predictive verb (VERB(ROOT)) of the sentence (step
2-1). If AUX is a form of do, we remove AUX and transform
VERB(ROOT) into the tense and number of AUX with Pattern
Library [47] (step 2-2). After that, the declarative sentence k
corresponding to qGEN is prepared. Finally, if aGEN is not an
affirmation (e.g., “No”), k is further negated (step 3). The final
k is returned as the declarative sentence for qGEN and aGEN.

2) Declarative Sentence Synthesis from Alternative Ques-
tion: It also involves three steps to synthesize the declarative
sentence from the given general question qALT and SUT’s
answer aALT. The whole process is shown in Fig. 2(b). The
first two steps are similar to the operations in Section III-C1.
The difference is that the obtained k after step 2 still contains
the alternatives (text in blue). So we adopt the Berkeley Neural
Parser [48] to parse the syntax tree of k and then use aALT to
replace the sub-tree rooted at the parent node of “or” (step 3).
Finally, the obtained k is returned as the declarative sentence
for qALT and aALT.

3) Declarative Sentence Synthesis from Wh-Question: To
obtain a fairly reliable declarative sentence from the given
wh-question qWH and SUT’s answer aWH, we design numerous
heuristic rules to process the distinct forms of qWH. Due to the
limited space in this paper, we only list four basic operations in
Fig. 2(c). The detailed rules (e.g., to adapt preposition) could
be found in the supplementary material [15]. These operations
are also performed based on the token dependency and the
Part-of-Speech Tags analyzed with spaCy toolkit [45] on qWH.

D. Follow-up Question Sentence Generation

In this section, we introduce the methods to generate follow-
up question sentences from the declarative sentences synthe-
sized by the above module. Two types of questions, namely
general questions and wh-questions, could be generated.

1) General Question Sentence Generation: The generation
of general questions could be seen as the opposite process to
Section III-C1. As shown in Fig. 3(a), given a declarative sen-
tence k, we first locate the predictive verb (VERB(ROOT)) in k

108

Authorized licensed use limited to: Wuhan University. Downloaded on July 18,2022 at 08:27:10 UTC from IEEE Xplore. Restrictions apply.

(a) General Question Sentence Generation (b) Wh-Question Sentence Generation

Fig. 3. Process and Example of Follow-up Question Sentence Generation

(step 1). Then, we check if there is an auxiliary (AUX) before
VERB(ROOT). If it is, we move the AUX to the beginning of the
whole sentence and then the corresponding general question
q′GEN is generated (step 2-1). Otherwise, we use Pattern Library
[47] to recognize the tense and number of VERB(ROOT) and
insert a do with suitable tense and number to the beginning
of the sentence. The q′GEN is then obtained (step 2-2).

2) Wh-Question Sentence Generation: Generating wh-
questions based on the given knowledge is fairly complicated
and challenging. It generally consists of two major steps, i.e.,
choosing proper target answers and producing the correspond-
ing questions. Fig. 3(b) gives an example of this process.

To choose proper target answers from the given declarative
sentence k, we first extract noun phrases and adjective phrases
from k because they are usually used as the answers of QA
software according to our observation on benchmark datasets
(step 1). This process is performed based on the Part-of-Speech
Tag of each token in k, which is labeled with spaCy toolkit
[45]. As a reminder, some unsuitable answers, such as phrases
with demonstrative pronouns and aWH, are excluded from TA
(detailed rules could be found at [15]).

With the potential target answers in TA, QAASKER then
raises a reasonable question for each of them according to k
(step 2). To handle various expression phenomena, we turn
to a DL-based end-to-end Language Model, UniLM [49],
instead of designing complicated heuristic rules. UniLM has
shown fairly promising performance of question generation on
SQuAD1 dataset [8]. Specifically, we load the UniLM question
generation model that is trained on SQuAD1 and released
publicly. QAASKER then inputs k together with each answer
taj in TA to the trained model and obtains the corresponding
new question set NQ = {nq1, nq2, . . . , nqn}.

However, the quality of the questions raised by UniLM is
not always guaranteed. For example, the questions generated
for the potential target answer 2) and 6) in the example are
unreasonable questions. These questions may lead to potential
false positive issues since the MRs do not hold when input is
invalid. To avoid such situation, we further design a method to
sift the fairly clean and reliable questions from NQ (step 3).
Our basic idea is that for each nqj , if it is a reasonable question
for taj according to k, the declarative sentence k′j created
with nqj and taj should be very similar to k. Therefore, we
adopt a widely-used sentence similarity metric, ROUGE [50],

TABLE III
EXAMPLE OF EXISTENCE MEASUREMENT

egyptian president (maximum)

president 0.2363 1.0000 1.0000
egypt 0.7443 0.2128 0.7443

to provide a similarity score3 sRj between k and each k′j . If
sRj is no greater than the pre-defined threshold θR, taj and
nqj will be erased from TA and NQ, respectively. According
to the result of our preliminary experiments, we set θR to be
0.7 in QAASKER. The potential target answer 2) and 6) and
their questions in this example are hence filtered out.

Finally, the valid new questions remained in NQ and their
corresponding target answers in TA will be returned as the
candidate new wh-questions for MR1 and MR3 (step 4).

E. Violation Measurement

In this section, we introduce the methods designed to
measure whether SUT violates the MRs on the given test
case. As mentioned in Section III-B, we need to measure if
a′WH contains atWH (MR1 and MR3) and if a′GEN expresses the
affirmation (MR2). QAASKER achieves the measurement by
considering the sentence semantic similarity. Specifically, we
use the semantic overlap between a′WH and atWH to indicate the
existence of atWH in a′WH, and the affirmation is measured with
the semantic similarity between a′GEN and some affirmative
expressions like “Yes”.

1) Existence Measurement: Whether atWH exists in a′WH is
measured via checking if there exist words in a′WH sharing
semantically similar embedding vectors with every word in
atWH. Considering the stop words often contain limited seman-
tic information, we do not consider them in this process.

Let us consider an example whose atWH is “the president of
egypt” and a′WH is “egyptian president”. Table III shows the
analysis on this example. Specifically, we first discard the stop
words “the” and “of ”. Then, for each word in atWH (second and
third rows), we calculate the cosine similarity between it and
all the words in a′WH (second and third columns) as suggested
in [51]. After that, the maximum similarity for each word in
atWH is calculated as shown in the right-most column. With this

3The similarity score is defined as sR(a, b) = min(R1Precision(a, b),
R1Recall(a, b)), where a and b are two strings while R1Precision and
R1Recall are two sub-metrics in ROUGE-1 score (token-wise ROUGE simi-
larity between two sentences).

109

Authorized licensed use limited to: Wuhan University. Downloaded on July 18,2022 at 08:27:10 UTC from IEEE Xplore. Restrictions apply.

method, although “egypt” from atWH is not in a′WH, a′WH is still
considered to contain atWH and not a violation, as it contains
“egyptian” that shares a similar word embedding vector and
expresses similar semantic meaning with “egypt”. Finally, we
average all the word-wise maximum similarity into an overall
score sexiavg to indicate the existence of atWH in a′WH. It will be
next compared against a pre-defined threshold θexi. If sexiavg is
no greater than θexi, atWH is considered absent from a′WH and a
violation will be reported. We set θexi to be 0.6000 according
to our preliminary experimental results. In this example, sexiavg

is calculated as (1.0000+0.7443)/2=0.8722. The SUT is thus
considered to pass the test on this test case.

2) Affirmation Measurement: To check whether a′GEN ex-
presses affirmation to the given general question, we propose
to calculate the maximum semantic similarity between a′GEN
and the word “Yes”.

TABLE IV
EXAMPLE OF AFFIRMATION MEASUREMENT

yep black (maximum)

yes 0.6019 0.2926 0.6019

This process is similar to the measurement of existence.
Specifically, as shown in Table IV, a′GEN in this example is
“yep it is black”. We first remove the stop words “it” and
“is”. After that, the word-wise cosine similarity is calculated
as shown in the second and third columns. Then, we obtain
the affirmative score saff of a′GEN, namely the maximum sim-
ilarity to “Yes”. In this example, saff is 0.6019. There is also
a threshold θaff set as 0.6000 according to our preliminary
experimental results. As a result, SUT is considered to pass
this test case because of saff > θaff .

IV. EXPERIMENTAL SETUP

A. Research Questions

To evaluate QAASKER, we study four research questions:
RQ1: The overall effectiveness of QAASKER. In this RQ,

we aim to provide a global picture on the effectiveness of
QAASKER in revealing the issues of QA software without
using the annotated ground truth labels.

RQ2: Validity of the revealed violations. Considering the
imperfection in most of the NLP generation and measurement
methods [49], [50], it is meaningful to understand the factu-
ality of these revealed violations. Therefore, in this RQ, we
perform a deeper inspection on these violations to measure
their validity.

RQ3: Types of the revealed true violations. To provide an
intuitive and constructive impression on the revealed issues,
in this RQ, we dive into the analysis on the valid violations
by locating the erroneous answers (that is, the source or the
follow-up outputs), as well as summarizing the types of the
answering issues according to their reasons.

RQ4: Helpfulness to fix the revealed answering issues. In
this RQ, we study the performance of a new model trained
on the dataset expanded with the proposed MRs in order to

understand if our method is helpful to fix the revealed issues.
This is a common paradigm adopted in many works that use
MT to test deep learning software [37], [40], [41].

B. Data Preparation

To evaluate the effectiveness of QAASKER on diverse types
of questions and tasks, we perform the evaluation experiment
on three datasets4, namely SQuAD2, BoolQ, and NatQA.
• SQuAD2 is a span extraction dataset, where the answer

of each question is a span of words from the reference
passage without demanding combination and rephrasing.
And when the question is unanswerable, the output is
expected to be “<NoAnswer>”. It contains 140k sam-
ples with wh-questions and 2k samples with general or
alternative questions in total, which are divided into 130k
training samples and 12k test samples.

• BoolQ is a dataset totally composed of general questions
obtained from Google Search queries and paired with
passages from Wikipedia that are considered sufficient to
deduce the answer. The answer is expected to be either
“Yes” or “No” (or sentences with similar meanings [13]).
It has 9.4k training samples and 3.3k test samples.

• NatQA is one abstractive QA dataset, which means it
requires the model to return answers that are not mere
substrings of the reference passage. We use the version
provided by UnifiedQA where each question is appended
with a reference passage. It includes 98k wh-questions
and 299 general and alternative questions5, which are then
divided into 97k training samples and 11k test samples.

For each dataset, we first use the QA software under test to
obtain the source outputs of all the test samples. After that, we
apply each of the three MRs on its eligible source test samples,
respectively. The testing (i.e., violation measurement) is then
conducted on the eligible samples.

C. Test Object

In this work, we use QAASKER to test the QA model built
with a state-of-the-art QA algorithm, UnifiedQA [13]. As we
introduce in Section II-A, UnifiedQA provides a solution to
the format-agnostic general QA system by unifying diverse
common closed-world QA task formats. It first trains a basic
text-to-text model on some seed QA datasets of multiple task
formats, during which the reference passages and the questions
in natural text are taken as input without using format-specific
prefixes. People can then fine-tune this pre-trained model into
specialized models for better performance on the specific QA
tasks. It is reported to have achieved promising performance
upon SQuAD2, BoolQ, and NatQA with some latest language
models like T5 [21].

Since UnifiedQA can solve various QA tasks with a unified
model, we use all three datasets to train only one UnifiedQA
model as the test object. Specifically, we collect the training

4We use the pre-processed datasets provided by UnifiedQA [13]. They can
be found at https://console.cloud.google.com/storage/browser/unifiedqa/data.

5NatQA includes some questions in miscellaneous and informal forms, e.g.,
“total number of death row inmates in the us?”.

110

Authorized licensed use limited to: Wuhan University. Downloaded on July 18,2022 at 08:27:10 UTC from IEEE Xplore. Restrictions apply.

samples from SQuAD2, BoolQ, and NatQA to form a hybrid
training set with 236,422 samples. As suggested in [13], we
use this hybrid training set to fine-tune the pre-trained T5-
large-based UnifiedQA model and regard the checkpoint with
the highest Exact Match (EM) score on the hybrid test set as
the final test object. The model is trained with one NVIDIA
GeForce RTX3090 GPU with 24GB memory, during which the
batch size is 3, the learning rate is 2e-5, the loss accumulates
every 5 steps, the EM-based evaluation is conducted per 5000
steps, and the early stop tolerance is 10 times.

V. RESULTS AND ANALYSIS

A. RQ1: The Overall Effectiveness of QAASKER

To evaluate the overall effectiveness of QAASKER in reveal-
ing the answering issues, we calculate SUT’s violation rates
(the ratio of the violated test cases in all eligible test cases) at
each MR on the three datasets, which are shown in Table V.

TABLE V
VIOLATION RATE AT EACH MR ON THREE DATASETS

Dataset MR1 MR2 MR3

SQuAD2 37.05% 65.85% 90.91%
BoolQ – – 72.78%
NatQA 51.98% 96.92% 46.15%

–: MR1 and MR2 cannot be applied on BoolQ as it only contains general questions.

From the result, we surprisingly found that all MRs have
revealed many violations on the datasets. This demonstrates
the effectiveness of QAASKER to reveal the answering issues
without the need for the ground truth labels. Furthermore,
we also found that MR2 and MR3, which involve the trans-
formation of question types, have revealed relatively more
violations than MR1. This is interesting because UnifiedQA
has shown promising ability to solve wh-questions and general
questions on SQuAD2 and BoolQ, respectively, according to
the reference-based tests [13]. But according to our results,
UnifiedQA fails to return proper answers to the general ques-
tion and wh-question related to the same knowledge on these
two datasets. From this point, we conjecture that UnifiedQA
might overfit the training samples and therefore could only
pass the test cases whose question is of the frequent types
among the training samples from their corresponding datasets.
This indicates the potential insufficient generalization of
UnifiedQA to figure out the questions of distinct types across
datasets, which is vital in unifying QA solutions [13].

B. RQ2: Validity of the Revealed Violations

By obtaining quite a few violations in RQ1, we are partic-
ularly interested in evaluating the validity of the revealed vio-
lations. We perform a manual inspection on these violations.
Specifically, if there is indeed at least one incorrect answer in
the source and follow-up outputs, we call the corresponding
violation “valid”.

We consider this inspection meaningful, because: (1) Apart
from reporting the violation rates, it is also necessary to give a
deep understanding on the factuality of the revealed violations.

TABLE VI
VALIDITY RATE OF THE REVEALED VIOLATIONS

Dataset MR1 MR2 MR3

SQuAD2 81/100 (81%) 100/100 (100%) 9/10 (90%)
BoolQ – – 87/100 (87%)
NatQA 85/100 (85%) 100/100 (100%) 5/6 (83%)

(2) Generation of wh-questions and measurement of semantic
similarity remain challenging tasks and cannot be guaranteed
to be 100% perfect and precise with current NLP techniques
[49], [50]. Therefore, it is necessary to check if the violations
are due to the incorrect answers or the imperfection in the
sentence generation and similarity measurement.

A co-author of this paper and another volunteer student par-
ticipate in the manual inspection. Both of them are proficient
in English. They are required to perform the inspection inde-
pendently, without discussing it with each other. Given an MR
and a dataset, if more than 100 violations are revealed, they
examine the validity of the randomly picked 100 violations.
Otherwise, they check the validity of all the violations.

After the inspection on the randomly picked violations, we
perform Cohen’s Kappa statistics [52]. The agreement rate
between two inspectors is substantial (0.79) and the inspectors
discuss and settle the disagreement at last. Thus, we consider
the validity rate of violations in this inspection can be referred
as a fairly reasonable indicator to the overall validity of our
experimental results. If this rate is fairly high, it means that
the effectiveness reported in RQ1 is convincing, and most of
the revealed violations are meaningful and should be seriously
considered by the developers and the users of QA software.

The final result is shown in Table VI, from which we
found that the inspected violations revealed by MR2 are all
valid, and over 80% of the inspected violations revealed by
MR1 and MR3 are valid as well. These rates are considered
acceptable when compared with the precision in similar testing
methods for the machine translation software [40]–[42]. We
also review the false positive violations and found that they
mainly result from the limitation of the semantic equivalence
measurement and the question generation on few corner cases.
For instance, it is not simple to identify the expected answer
“yesun temur” as semantically contained in the output answer
“yesün temür”. And it is also not easy to filter out the questions
with minor flaws, such as “Seven episodes are going to be in
what season?” for knowledge “Seven episodes are going to be
in game of thrones season 7” (the target answer is in italic).

To conclude, the high validity rates indicate the effective-
ness of QAASKER is meaningful and convincing. They also
show the certain reliability of the design and implementation in
our QAASKER regarding the quality of wh-question generation
and semantics similarity measurement.

C. RQ3: Types of the Revealed True Violations

In this RQ, we further study the valid true violations found
in RQ2, by locating the erroneous answers (that is, the source
or the follow-up answer) as well as summarizing the reasons.

111

Authorized licensed use limited to: Wuhan University. Downloaded on July 18,2022 at 08:27:10 UTC from IEEE Xplore. Restrictions apply.

TABLE VII
NUMBER OF ERRONEOUS ANSWERS ON TRUE VIOLATIONS

Dataset MR1 MR2 MR3

SQuAD2 22 , 59 25 , 75 4 , 5
BoolQ – – 18 , 69
NatQA 44 , 41 58 , 42 0 , 5

1. “A , B” means that in A (B) violations the source (follow-up) output is wrong.
2. As a reminder, when the source answer is wrong, the correctness of the follow-
up answer cannot be assessed and thus we do not consider it wrong.

We first locate the erroneous answer in the true violations.
The statistics result in Table VII shows that QAASKER can
find errors on both source test cases and follow-up test cases.
Moreover, we found that in the violations revealed by MR2
and MR3 on SQuAD2 and BoolQ, respectively, more issues
are blamed for the follow-up answer than the source answer.
Since the follow-up questions formulated with MR2 and MR3
are of the fairly unfrequent formats in SQuAD2 and BoolQ,
respectively, this phenomenon further supports the conjecture
of the limited generalization on question types across datasets,
which has been discussed in Section V-A.

Besides, we explore five categories in the true violations to
give a systematic and intuitive understanding about the issues
revealed by QAASKER. The examples are listed in Table VIII.
<NoAnswer> for answerable questions. We first found

that UnifiedQA cannot answer some answerable questions. In
Example 1, the passage provides obvious evidence to deduce
the answer, in which only the word “fund” in the question
is replaced with its synonym “meet the cost”. However, the
UnifiedQA model fails to find the correct answer and merely
outputs <NoAnswer>.

Format mismatch between the answer and the question.
The second major issue is that some answers from UnifiedQA
are not in the correct format that corresponds to the assigned
questions. For example, the question in Example 2-1 is a wh-
question, which desires the concrete name of a film. However,
SUT only returns “No”. Meanwhile, the answer to the general
question in Example 2-2 should be either “Yes” or “No”, but
SUT wrongly gives an irrelevant verb as the answer.

Irrelevant content of the answer. Although successful in
recognizing the type of the question, the UnifiedQA model
sometimes gives answers with irrelevant content. Example 3
presents an example of this situation. The model returns an
answer “Sky”, which is far from the correct answer “Some
encrypted broadcasts”.

Grammatical error. The UnifiedQA model also returns
some answers with grammatical issues, which largely harms
the quality of the answers. For instance, in Example 4, an
incomplete sentence is given as the answer.

Missing information in the answer. We also notice that the
UnifiedQA model may miss some necessary information and
give a partially correct answer. Referring to the model’s answer
in Example 5, though it indicates that Shi Bingzhi is someone’s
father, the pronoun “his” is ambiguous. It is evidently not an
accurate answer yet according to the reference passage.

D. RQ4: Helpfulness to Fix the Revealed Answering Issues

In this RQ, we study the helpfulness of our method in fixing
the revealed issues for the SUT. Retraining a model with the
samples that are expanded by the proposed MRs is a widely-
adopted method to repair the DL models in many works [37],
[40], [41]. Inspired by this, we expand the training samples
with the three proposed MRs to retrain one new model. The
difference of the violation situation between the original and
new model would show the helpfulness of the MRs to fix the
answering issues.

Specifically, for each sample in the hybrid training set, we
use the MRs that are eligible on it to generate a new training
sample. To ensure the correctness of the generated samples, we
use the ground truth labels of the training samples rather than
SUT’s output as the answer during the synthesis of declarative
sentences. We collect the generated samples together with all
the samples in the original hybrid training set to form a new
hybrid training set, which includes 537,175 samples. Then, we
retrain a new model with the new training set, during which the
hyper parameters keep the same as introduced in Section IV-C.
The test sets are also kept the same as before.

The test result for the new model is presented in Table IX.
We first see that the improvement is quite substantial. The
violation rates about all MRs on three datasets decrease a lot.
Meanwhile, the reference-based test metric, i.e., average EM
score, stays fairly stable (original: 0.5574 v.s. new: 0.5483). In
addition, the improvement on MR2 and MR3, which involve
the transformation of question types, is especially significant.
These findings indicate that the proposed MRs are helpful
for improving the performance of SUT by expanding the
existing training samples. These MRs can help the model to
correctly handle more questions, notably the ones of the types
that are relatively rare in the corresponding dataset.

Meanwhile, we could also find that there still exist many
violations. This finding demonstrates that it is not that easy to
repair all the issues revealed by QAASKER. Since QAASKER
is a testing method per se, from this point we argue that
our method is necessary for the reliability checking of QA
software output and the in-depth problem revealing of QA
software. This again confirms the significance of QAASKER
as a testing method.

VI. DISCUSSION ON REAL-LIFE USAGE

With the development of QA algorithms and other support-
ive techniques like knowledge graph, some industrial products
have been able to provide preliminary QA services. For exam-
ple, the Google Search service [14] can now return an exact
answer or one paragraph with the answer span in bold when we
input a wh-question as the query. Thus, we try QAASKER on
the Google Search service to take an initial sip of its usefulness
on the real-life QA applications. And as a search engine, the
Google Search service does not require the reference passage
as input but retrieves necessary information from web by itself.
Therefore, it can also be seen as a representative test object
of the open-world QA software.

112

Authorized licensed use limited to: Wuhan University. Downloaded on July 18,2022 at 08:27:10 UTC from IEEE Xplore. Restrictions apply.

TABLE VIII
EXAMPLES OF REVEALED ANSWERING ISSUES

Example 1 Example 2-1 Example 2-2

Reference
Passage

... The IPCC receives funding through ... while
UNEP meets the cost of the Depute Secretary ...

... the network renewed Carrie Diaries for ... The
CW canceled the series after two seasons ...

... Li Tan, the son-in-law of a powerful official,
instigated a revolt against Mongol rule in 1262 ...

Question What does UNEP fund? What film does not have a season 3? Did Li Tan lead a revolt in 1262?
Expected Ans IPCC’s deputy secretary The Carrie Diaries Yes

UnifiedQA Ans <NoAnswer> No Instigated

Example 3 Example 4 Example 5

Reference
Passage

... Some broadcasts are free-to-air ... some are
encrypted and require a monthly subscription ...

... the VideoGuard pay-TV scrambling system
owned by NDS, a Cisco Systems company ...

... Shi Tianze was a Han Chinese who lived in
the Jin dynasty ... His father was Shi Bingzhi ...

Question What require to view monthly subscription? What is Cisco systems? Who was Shi Bingzhi?
Expected Ans Some encrypted broadcasts The parent company of NDS Shi Tianze’s father

UnifiedQA Ans Sky The name of the company that His father

TABLE IX
VIOLATION RATE AFTER FIXING WITH TRAINING DATA EXPANDING

Dataset MR1 MR2 MR3

SQuAD2 30.62% (6.43%) 0.13% (65.72%) 48.65% (42.26%)
BoolQ – – 29.70% (43.08%)
NatQA 22.24% (29.74%) 0.02% (96.90%) 31.58% (14.57%)

Values in brackets indicate the improvement to the corresponding rates in Table V.

According to our observation, the Google Search service
can mainly answer wh-questions now. Therefore, we only try
MR1 on it. Besides, as the returned results vary in forms (e.g.,
sometimes an exact phrase and occasionally a paragraph with
one span in bold), we only perform a small-scale trial by hand
as the preliminary exploration. Specifically, we first randomly
choose 20 wh-questions from an open-world QA benchmark,
MKQA6 [53]. These 20 wh-questions are used as the source
inputs and we manually collect and unify the answers returned
from Google Search as the source outputs. After that, we run
QAASKER to generate new questions and their target answers
based on the source inputs and outputs. We next input the
new questions as queries and obtain the search results, from
which the follow-up outputs are manually extracted. At last,
we perform the violation measurement on all 20 test cases.

As a result, 5 out of 20 test cases trigger a violation7. For
example, we first query “When was the first railroad built in
the United States?” and obtain the source answer “1830” from
Google Search. After that, we query “In which country was
the first railroad built in 1830?” whose target answer is “the
United States”. However, Google Search returns an irrelevant
answer “The railroad was first developed in Great Britain...’’,
which triggers a violation. Actually, the answer to the source
input should be “1827-02-28” according to the annotated label
from MKQA. This demonstrates that QAASKER finds a true
erroneous answer returned by the Google Search service. In a
word, this trial shows the potential of QAASKER to reveal
the real-life bugs on daily QA applications. And it also shows
the effectiveness of QAASKER on open-world QA software.

6All the questions in MKQA can be answered with the public knowledge
from the web.

7Based on the search results obtained on April 10, 2021.

VII. THREATS TO VALIDITY

The first threat to validity is about the representativeness of
the test object and the datasets. Actually, UnifiedQA is a state-
of-the-art QA algorithm that has delivered performance on par
with or better than the format-agnostic models. Besides, it is
the only method to unify the solutions of various QA forms,
which approaches the real-life general QA applications [13].
Thus, we consider it as a suitable representative test object in
our preliminary exploration. Actually, QAASKER is a black-
box testing method that only involves the input and output of
QA software. And as we introduce in Section II-A, current
QA tasks (and their input and output requirements) can be
generally categorized into the closed-world ones and the open-
world ones. Therefore, QAASKER should be generalizable to
other closed-world and open-world QA software, just in the
way in which we test the UnifiedQA model and the Google
Search service, respectively. As for the datasets, the adopted
benchmarks are all classic and have been widely used in the
reference-based testing of QA software and cover the major
types of QA tasks [13]. Since we evaluate QAASKER on all
of them, we consider the evaluation should have fairly good
generalization. We also plan to evaluate QAASKER on more
applications and corpora in our future work.

The second threat to validity is about the tools that we use
to realize the proposed MRs. As illustrated in Section V-B, the
wh-question generation and semantic similarity measurement
are not perfect yet because of the limited NLP techniques. To
assure the validity of the revealed violations, we have designed
various methods to avoid the false positive violations. We also
inspected the factuality of the revealed violations. The result
shows that over 80% of the inspected violations are valid. This
is acceptable when compared to other MT-based test methods
for DL software [40]–[42]. And we will keep trying to improve
this validity rate in our future work as well.

The last threat to validity comes from the manual inspection
and categorization of the revealed violations. To alleviate the
bias introduced by the difference of subjective cognition, we
delivered a tutorial to the inspectors before the inspection. We
have also performed Cohen’s Kappa statistics and found the
agreement rate between two inspectors is substantial (0.79).
And all the disagreements are settled after their discussion.

113

Authorized licensed use limited to: Wuhan University. Downloaded on July 18,2022 at 08:27:10 UTC from IEEE Xplore. Restrictions apply.

VIII. RELATED WORKS

In this section, we discuss the related works in two aspects,
i.e., the benchmark datasets proposed for testing QA software
and the application of Metamorphic Testing for other Deep
Learning software.

A. Benchmark Datasets for QA Software

To test QA systems as well as understand whether machine
can intelligently deduce the question as the human do, many
works proposed various benchmark datasets [2], [26]. These
datasets are with diverse forms of task, including to fill in
the blanks [54], [55], judge the correct options [6], [29], [56],
extract the relevant spans [5], [8], [28], and return fluent text
answers [7], [9]. There are also datasets of the samples with
adversarial inputs, such as typos [57] and irrelevant sentences
[58], to test the robustness of QA software. But as mentioned
in Section I, these datasets may mainly focus on some specific
topics and task formats. As a result, solely testing with the
reference-based paradigm on these datasets is not extensible
and may be biased and insufficient.

Unlike these works, in this paper, we propose a method to
test QA software without the demand of annotated labels via
asking recursively. It breaks the reliance on the ground truth
labels of test cases and hence enables both the flexible just-in-
time test and the extensible test that can leverage the massive
unlabeled data in real-life usage to test QA software.

B. Metamorphic Testing for Deep Learning Software

To alleviate the oracle problem during testing various Deep
Learning (DL) software, quantities of works leverage MT and
propose many novel MRs to test the DL models for different
tasks.

The Autonomous Driving (AD) systems and the Neural Ma-
chine Translation (NMT) services are two typical DL software
that attracts many MT-based testing methods. Tian et al. [37]
and Zhang et al. [36] propose to test AD against the relation
among the steering angles under distinct weather conditions.
Zhou et al. [38] combine MT and fuzzing and take the LiDAR
point-cloud data of AD into consideration during testing. Wang
et al. [39] leverage MT to test the object detection algorithms
that are used to build a key component in AD systems. As for
the NMT service, researchers propose to check its correctness
with MT based on the structure invariance [40], pathological
invariance [41], referential transparency [42], etc. In addition
to being adopted to test NMT services, MT is also found to be
helpful in assessing the quality of input data [43] and repairing
the erroneous translations [44] for NMT services.

In this paper, we also adopt MT to test a hot DL application,
QA software. Specifically, we propose three novel MRs against
the consistency among the input question and output answer
pairs that are related to a same knowledge. We also implement
three tools, i.e., the declaration synthesis, question generation,
and similarity measurement, to realize the proposed MRs.

Besides, we propose to validate the machine reading com-
prehension (MRC) DL models with MT in our previous work
[30]. It aims to provide the MRC models with one systematic

and extensible assessment of language understanding capabil-
ities against required linguistic properties. In that work, the
follow-up inputs were built on the basis of merely the source
inputs and the transformation about several related linguistic
properties like synonyms and negations.

Different from that, the QAASKER devised in this work is a
recursive metamorphic testing method that constructs follow-
up inputs by considering both the source input and the source
output. This could involve some more abstract properties, such
as the generalizability on question types. And we also evaluate
QAASKER on not only the previously used boolean question
task, but also the span extraction and the free-form answering
tasks. Moreover, we further explore the real-life usefulness of
QAASKER on the Google Search service and its helpfulness
to repair the revealed issues.

IX. CONCLUSION AND FUTURE WORK

Question Answering (QA) software has been widely used
in our daily life. In this paper, we propose a novel recursive
Metamorphic Testing method named QAASKER with three
Metamorphic Relations. QAASKER tests QA software through
checking its behaviors on multiple recursively asked questions
that are related to the same knowledge. It breaks the reliance
on the pre-annotated labels of test cases, thus enables both the
flexible just-in-time test during usage and the extensible test
with massive unlabeled data for QA software, which cannot
be supported by the current reference-based test paradigm. We
evaluate the effectiveness of QAASKER through using it to test
a state-of-the-art unified QA algorithm and the Google Search
service. The comprehensive experimental results demonstrate
that QAASKER is able to reveal quantities of valid violations
that depict diverse answering issues.

We have planned plenty of future work directions. First, we
would like to further evaluate the effectiveness of QAASKER
on more applications and corpora. It would be interesting and
significant to see the defects revealed on other QA software,
especially the issues about some essential functionalities like
generalization and the problems that may have been concealed
by the insufficient reference-based tests. In addition, we will
also try to design new MRs by considering more properties of
QA software and keep improving the validity of the revealed
violations. We are pretty interested to explore and strengthen
QAASKER on repairing the revealed issues as well.

ACKNOWLEDGMENT

We first sincerely appreciate the positive acknowledgment
and the very kind suggestions from the anonymous reviewers.
We would also like to thank Yuanxiang Ji for volunteering in
the manual inspection practices of our evaluation experiment.
This work was partially supported by the National Key R&D
Program of China under the grant number 2020AAA0107803,
and the National Natural Science Foundation of China under
the grant numbers 61972289 and 61832009. And the numerical
calculations in this work have been partially done on the su-
percomputing system in the Supercomputing Center of Wuhan
University.

114

Authorized licensed use limited to: Wuhan University. Downloaded on July 18,2022 at 08:27:10 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] T. Nguyen, M. Rosenberg, X. Song, J. Gao, S. Tiwary, R. Majumder,
and L. Deng, “MS MARCO: A human generated machine reading
comprehension dataset,” in Proceedings of the 2016 Workshop on
Cognitive Computation: Integrating neural and symbolic approaches
co-located with the 30th Annual Conference on Neural Information
Processing Systems (NIPS 2016), Barcelona, Spain, December 9, 2016,
ser. CEUR Workshop Proceedings, T. R. Besold, A. Bordes, A. S.
d’Avila Garcez, and G. Wayne, Eds., vol. 1773. CEUR-WS.org, 2016.

[2] Z. Zhang, H. Zhao, and R. Wang, “Machine reading comprehension:
The role of contextualized language models and beyond,” CoRR, vol.
abs/2005.06249, 2020.

[3] Apple Inc., “Apple siri,” https://www.apple.com/siri/.
[4] Baidu Inc., “Baidu dueros,” https://dueros.baidu.com/.
[5] P. Rajpurkar, R. Jia, and P. Liang, “Know what you don’t know:

Unanswerable questions for squad,” in Proceedings of the 2018 An-
nual Meeting of the Association for Computational Linguistics, ACL
2018, Melbourne, Australia, July 15-20, 2018, Volume 2: Short Papers,
I. Gurevych and Y. Miyao, Eds. Association for Computational
Linguistics, 2018, pp. 784–789.

[6] C. Clark, K. Lee, M. Chang, T. Kwiatkowski, M. Collins, and
K. Toutanova, “Boolq: Exploring the surprising difficulty of natural
yes/no questions,” in Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Papers), J. Burstein,
C. Doran, and T. Solorio, Eds. Association for Computational Linguis-
tics, 2019, pp. 2924–2936.

[7] T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. P. Parikh,
C. Alberti, D. Epstein, I. Polosukhin, J. Devlin, K. Lee, K. Toutanova,
L. Jones, M. Kelcey, M. Chang, A. M. Dai, J. Uszkoreit, Q. Le, and
S. Petrov, “Natural questions: a benchmark for question answering
research,” Trans. Assoc. Comput. Linguistics, vol. 7, pp. 452–466, 2019.

[8] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100, 000+
questions for machine comprehension of text,” in Proceedings of the
2016 Conference on Empirical Methods in Natural Language Process-
ing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, J. Su,
X. Carreras, and K. Duh, Eds. The Association for Computational
Linguistics, 2016, pp. 2383–2392.

[9] W. He, K. Liu, J. Liu, Y. Lyu, S. Zhao, X. Xiao, Y. Liu, Y. Wang,
H. Wu, Q. She, X. Liu, T. Wu, and H. Wang, “Dureader: a chinese
machine reading comprehension dataset from real-world applications,”
in Proceedings of 2018 the Workshop on Machine Reading for Question
Answering@ACL 2018, Melbourne, Australia, July 19, 2018, E. Choi,
M. Seo, D. Chen, R. Jia, and J. Berant, Eds. Association for
Computational Linguistics, 2018, pp. 37–46.

[10] M. Gardner, Y. Artzi, V. Basmova, J. Berant, B. Bogin, S. Chen,
P. Dasigi, D. Dua, Y. Elazar, A. Gottumukkala, N. Gupta, H. Hajishirzi,
G. Ilharco, D. Khashabi, K. Lin, J. Liu, N. F. Liu, P. Mulcaire,
Q. Ning, S. Singh, N. A. Smith, S. Subramanian, R. Tsarfaty, E. Wallace,
A. Zhang, and B. Zhou, “Evaluating models’ local decision boundaries
via contrast sets,” in Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: Findings, EMNLP 2020,
Online Event, 16-20 November 2020, T. Cohn, Y. He, and Y. Liu, Eds.
Association for Computational Linguistics, 2020, pp. 1307–1323.

[11] M. T. Ribeiro, T. Wu, C. Guestrin, and S. Singh, “Beyond accuracy:
Behavioral testing of NLP models with checklist,” in Proceedings of the
2020 Annual Meeting of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, D. Jurafsky, J. Chai, N. Schluter,
and J. R. Tetreault, Eds. Association for Computational Linguistics,
2020, pp. 4902–4912.

[12] C. G. Northcutt, A. Athalye, and J. Mueller, “Pervasive label errors
in test sets destabilize machine learning benchmarks,” CoRR, vol.
abs/2103.14749, 2021.

[13] D. Khashabi, S. Min, T. Khot, A. Sabharwal, O. Tafjord, P. Clark, and
H. Hajishirzi, “Unifiedqa: Crossing format boundaries with a single QA
system,” in Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing: Findings, EMNLP 2020, Online Event,
16-20 November 2020, T. Cohn, Y. He, and Y. Liu, Eds. Association
for Computational Linguistics, 2020, pp. 1896–1907.

[14] Google Inc., “Google search service,” http://google.com/.
[15] “Tool, replication package, and specific implementation details for this

paper.” [Online]. Available: https://github.com/imcsq/ASE21-QAAskeR

[16] M. Gupta, N. Kulkarni, R. Chanda, A. Rayasam, and Z. C. Lipton,
“Amazonqa: A review-based question answering task,” in Proceedings of
the 2019 International Joint Conference on Artificial Intelligence, IJCAI
2019, Macao, China, August 10-16, 2019, S. Kraus, Ed. ijcai.org, 2019,
pp. 4996–5002.

[17] Q. Jin, B. Dhingra, Z. Liu, W. W. Cohen, and X. Lu, “Pubmedqa: A
dataset for biomedical research question answering,” in Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language
Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7,
2019, K. Inui, J. Jiang, V. Ng, and X. Wan, Eds. Association for
Computational Linguistics, 2019, pp. 2567–2577.

[18] S. Suster and W. Daelemans, “Clicr: a dataset of clinical case reports
for machine reading comprehension,” in Proceedings of the 2018
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, NAACL-
HLT 2018, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 1
(Long Papers), M. A. Walker, H. Ji, and A. Stent, Eds. Association
for Computational Linguistics, 2018, pp. 1551–1563.

[19] D. Chen, A. Fisch, J. Weston, and A. Bordes, “Reading wikipedia to
answer open-domain questions,” in Proceedings of the 2017 Annual
Meeting of the Association for Computational Linguistics, ACL 2017,
Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers,
R. Barzilay and M. Kan, Eds. Association for Computational Lin-
guistics, 2017, pp. 1870–1879.

[20] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized BERT
pretraining approach,” CoRR, vol. abs/1907.11692, 2019.

[21] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning
with a unified text-to-text transformer,” J. Mach. Learn. Res., vol. 21,
pp. 140:1–140:67, 2020.

[22] SuperGLUE, “Superglue benchmark leadorboard,” https:
//super.gluebenchmark.com/leaderboard.

[23] Y. Cui, Z. Chen, S. Wei, S. Wang, T. Liu, and G. Hu, “Attention-over-
attention neural networks for reading comprehension,” in Proceedings
of the 2017 Annual Meeting of the Association for Computational
Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, Volume
1: Long Papers, R. Barzilay and M. Kan, Eds. Association for
Computational Linguistics, 2017, pp. 593–602.

[24] T. Schick and H. Schütze, “Exploiting cloze questions for few-
shot text classification and natural language inference,” CoRR, vol.
abs/2001.07676, 2020.

[25] Z. Zhang, J. Yang, and H. Zhao, “Retrospective reader for machine
reading comprehension,” CoRR, vol. abs/2001.09694, 2020.

[26] D. Dzendzik, C. Vogel, and J. Foster, “English machine reading com-
prehension datasets: A survey,” CoRR, vol. abs/2101.10421, 2021.

[27] A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael, F. Hill,
O. Levy, and S. R. Bowman, “Superglue: A stickier benchmark for
general-purpose language understanding systems,” in Proceedings of the
2019 Annual Conference on Neural Information Processing Systems,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, H. M.
Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and
R. Garnett, Eds., 2019, pp. 3261–3275.

[28] Z. Yang, P. Qi, S. Zhang, Y. Bengio, W. W. Cohen, R. Salakhutdinov,
and C. D. Manning, “Hotpotqa: A dataset for diverse, explainable multi-
hop question answering,” in Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2018,
Brussels, Belgium, October 31 - November 4, 2018, E. Riloff, D. Chiang,
J. Hockenmaier, and J. Tsujii, Eds. Association for Computational
Linguistics, 2018, pp. 2369–2380.

[29] D. Khashabi, S. Chaturvedi, M. Roth, S. Upadhyay, and D. Roth,
“Looking beyond the surface: A challenge set for reading comprehension
over multiple sentences,” in Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT 2018, New
Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers),
M. A. Walker, H. Ji, and A. Stent, Eds. Association for Computational
Linguistics, 2018, pp. 252–262.

[30] S. Chen, S. Jin, and X. Xie, “Validation on machine reading compre-
hension software without annotated labels: A property-based method,”
in Proceedings of the 2021 ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ESEC/FSE 2021, Athens, Greece, August 23-28, 2021, D. Spinellis,

115

Authorized licensed use limited to: Wuhan University. Downloaded on July 18,2022 at 08:27:10 UTC from IEEE Xplore. Restrictions apply.

G. Gousios, M. Chechik, and M. D. Penta, Eds. ACM, 2021, pp.
590–602.

[31] T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing: a
new approach for generating next test cases.” Department of Computer
Science, Hong Kong University, Tech. Rep. HKUST-CS98-01, 1998.

[32] T. Y. Chen, F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey, T. H. Tse, and Z. Q.
Zhou, “Metamorphic testing: A review of challenges and opportunities,”
ACM Computing Surveys, vol. 51, no. 1, Jan. 2018.

[33] X. Xie, J. W. Ho, C. Murphy, G. Kaiser, B. Xu, and T. Y. Chen, “Testing
and validating machine learning classifiers by metamorphic testing,”
Journal of Systems and Software, vol. 84, no. 4, pp. 544–558, 2011,
the Ninth International Conference on Quality Software.

[34] X. Xie, Z. Zhang, T. Y. Chen, Y. Liu, P. Poon, and B. Xu, “METTLE: A
metamorphic testing approach to assessing and validating unsupervised
machine learning systems,” IEEE Trans. Reliab., vol. 69, no. 4, pp.
1293–1322, 2020.

[35] Z. Zhou, S. Xiang, and T. Y. Chen, “Metamorphic testing for software
quality assessment: A study of search engines,” IEEE Trans. Software
Eng., vol. 42, no. 3, pp. 264–284, 2016.

[36] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “Deeproad:
Gan-based metamorphic testing and input validation framework for
autonomous driving systems,” in Proceedings of the 2018 International
Conference on Automated Software Engineering, ASE 2018, Montpellier,
France, September 3-7, 2018, M. Huchard, C. Kästner, and G. Fraser,
Eds. ACM, 2018, pp. 132–142.

[37] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: automated testing of
deep-neural-network-driven autonomous cars,” in Proceedings of the
2018 International Conference on Software Engineering, ICSE 2018,
Gothenburg, Sweden, May 27 - June 03, 2018, M. Chaudron, I. Crnkovic,
M. Chechik, and M. Harman, Eds. ACM, 2018, pp. 303–314.

[38] Z. Q. Zhou and L. Sun, “Metamorphic testing of driverless cars,”
Commun. ACM, vol. 62, no. 3, pp. 61–67, 2019.

[39] S. Wang and Z. Su, “Metamorphic object insertion for testing object
detection systems,” in Proceedings of the 2020 International Conference
on Automated Software Engineering, ASE 2020, Melbourne, Australia,
September 21-25, 2020. IEEE, 2020, pp. 1053–1065.

[40] P. He, C. Meister, and Z. Su, “Structure-invariant testing for machine
translation,” in Proceedings of the 2020 International Conference on
Software Engineering, Seoul, ICSE 2020, South Korea, 27 June - 19
July, 2020, G. Rothermel and D. Bae, Eds. ACM, 2020, pp. 961–973.

[41] S. Gupta, P. He, C. Meister, and Z. Su, “Machine translation testing
via pathological invariance,” in Proceedings of the 2020 Joint European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, Virtual Event, ESEC/FSE 2020, USA, November
8-13, 2020, P. Devanbu, M. B. Cohen, and T. Zimmermann, Eds. ACM,
2020, pp. 863–875.

[42] P. He, C. Meister, and Z. Su, “Testing machine translation via referential
transparency,” in Proceedings of the 2021 International Conference on
Software Engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021.
IEEE, 2021, pp. 410–422.

[43] B. Yan, B. Yecies, and Z. Q. Zhou, “Metamorphic relations for data
validation: a case study of translated text messages,” in Proceedings of
the 2019 International Workshop on Metamorphic Testing, MET@ICSE
2019, Montreal, QC, Canada, May 26, 2019, X. Xie, P. Poon, and L. L.
Pullum, Eds. IEEE / ACM, 2019, pp. 70–75.

[44] Z. Sun, J. M. Zhang, M. Harman, M. Papadakis, and L. Zhang, “Auto-
matic testing and improvement of machine translation,” in Proceedings
of the 2020 International Conference on Software Engineering, ICSE
2020, Seoul, South Korea, 27 June - 19 July, 2020, G. Rothermel and
D. Bae, Eds. ACM, 2020, pp. 974–985.

[45] Explosion, “spacy toolkit,” https://spacy.io/.
[46] Universal Dependencies Contributors, “Universal dependencies,” https:

//universaldependencies.org/.
[47] T. D. Smedt and W. Daelemans, “Pattern for python,” J. Mach. Learn.

Res., vol. 13, pp. 2063–2067, 2012.
[48] N. Kitaev and D. Klein, “Constituency parsing with a self-attentive

encoder,” in Proceedings of the 2018 Annual Meeting of the Association
for Computational Linguistics, ACL 2018, Melbourne, Australia, July
15-20, 2018, Volume 1: Long Papers, I. Gurevych and Y. Miyao, Eds.
Association for Computational Linguistics, 2018, pp. 2676–2686.

[49] L. Dong, N. Yang, W. Wang, F. Wei, X. Liu, Y. Wang, J. Gao,
M. Zhou, and H. Hon, “Unified language model pre-training for natural
language understanding and generation,” in Proceedings of the 2019
Annual Conference on Neural Information Processing Systems, NeurIPS

2019, December 8-14, 2019, Vancouver, BC, Canada, H. M. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Gar-
nett, Eds., 2019, pp. 13 042–13 054.

[50] C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,”
in Text Summarization Branches Out. Association for Computational
Linguistics, 2004, pp. 74–81.

[51] R. Rehurek, “Gensim toolkit,” https://radimrehurek.com/gensim/.
[52] J. Cohen, “A coefficient of agreement for nominal scales,” Educational

and psychological measurement, vol. 20, no. 1, pp. 37–46, 1960.
[53] S. Longpre, Y. Lu, and J. Daiber, “MKQA: A linguistically diverse

benchmark for multilingual open domain question answering,” CoRR,
vol. abs/2007.15207, 2020.

[54] T. Onishi, H. Wang, M. Bansal, K. Gimpel, and D. A. McAllester, “Who
did what: A large-scale person-centered cloze dataset,” in Proceedings
of the 2016 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016,
J. Su, X. Carreras, and K. Duh, Eds. The Association for Computational
Linguistics, 2016, pp. 2230–2235.

[55] S. Suster and W. Daelemans, “Clicr: a dataset of clinical case reports
for machine reading comprehension,” in Proceedings of the 2018
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, NAACL-
HLT 2018, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 1
(Long Papers), M. A. Walker, H. Ji, and A. Stent, Eds. Association
for Computational Linguistics, 2018, pp. 1551–1563.

[56] G. Lai, Q. Xie, H. Liu, Y. Yang, and E. H. Hovy, “RACE: large-
scale reading comprehension dataset from examinations,” in Proceedings
of the 2017 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2017, Copenhagen, Denmark, September 9-11,
2017, M. Palmer, R. Hwa, and S. Riedel, Eds. Association for
Computational Linguistics, 2017, pp. 785–794.

[57] S. Eger and Y. Benz, “From hero to zéroe: A benchmark of low-level
adversarial attacks,” in Proceedings of the 2020 Conference of the Asia-
Pacific Chapter of the Association for Computational Linguistics and the
10th International Joint Conference on Natural Language Processing,
AACL/IJCNLP 2020, Suzhou, China, December 4-7, 2020, K. Wong,
K. Knight, and H. Wu, Eds. Association for Computational Linguistics,
2020, pp. 786–803.

[58] R. Jia and P. Liang, “Adversarial examples for evaluating reading
comprehension systems,” in Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2017,
Copenhagen, Denmark, September 9-11, 2017, M. Palmer, R. Hwa, and
S. Riedel, Eds. Association for Computational Linguistics, 2017, pp.
2021–2031.

116

Authorized licensed use limited to: Wuhan University. Downloaded on July 18,2022 at 08:27:10 UTC from IEEE Xplore. Restrictions apply.

